Pembelajaran Matematika Realistik (PMR)

Pembelajaran Matematika Realistik (PMR) merupakan operasionalisasi dari suatu pendekatan pendidikan matematika yang telah dikembangkan di Belanda dengan nama Realistic Mathematics Education (RME) yang artinya pendidikan matematika realistik. Pembelajaran matematika realistik pada dasarnya adalah pemanfaatan realitas dan lingkungan yang dipahami peserta didik untuk memperlancar proses pembelajaran matematika, sehingga mencapai tujuan pendidikan matematika secara lebih baik dari pada yang lalu. Yang dimaksud dengan realita yaitu hal-hal yang nyata atau kongkret yang dapat diamati atau dipahami peserta didik lewat membayangkan, sedangkan yang dimaksud dengan lingkungan adalah lingkungan tempat peserta didik berada baik lingkungan sekolah, keluarga maupun masyarakat yang dapat dipahami peserta didik. Lingkungan dalam hal ini disebut juga kehidupan sehari-hari.
Menurut Hans Freudental matematika merupakan aktivitas insani (human activities) dan harus dikaitkan dengan realitas. Dengan demikian ketika siswa melakukan kegiatan belajar matematika maka dalam dirinya terjadi proses matematisasi. Terdapat dua macam matematisasi, yaitu: (1) matematisasi horisontal dan (2) matematisasi vertikal. Matematisasi horisontal berproses dari dunia nyata ke dalam simbol-simbol matematika. Proses terjadi pada siswa ketika ia dihadapkan pada problematika yang kehidupan / situasi nyata. Sedangkan matematisasi vertikal merupakan proses yang terjadi di dalam sistem matematika itu sendiri; misalnya: penemuan strategi menyelesaiakn soal, mengkaitkan hubungan antar konsep-konsep matematis atau menerapkan rumus/temuan rumus.
Dalam Saragih (2007:44) proses pengembangan konsep  dan  ide-ide matematika yang dimulai  dari  dunia nyata oleh De Lange disebut matematisasi konsep dan memiliki model skematis proses belajar seperti pada Gambar di bawah ini:




Gambaran proses pengembangan konsep di atas tidak mempunyai titik akhir, hal ini menunjukkan bahwa proses lebih penting dari hasil akhir. Sedangkan titik awal proses menekankan pada konsepsi yang sudah dikenal siswa, hal ini disebabkan oleh asumsi bahwa setiap siswa memiliki konsep awal tentang ide-ide matematika. Setelah siswa terlibat secara bermakna dalam proses belajar, ia dapat ditingkatkan ke tingkat yang lebih tinggi untuk secara aktif membangun pengetahuan baru. Berkaitan dengan proses pengembangan konsep matematika di atas, menurut Gravemeijer dalam Saragih terdapat tiga prinsip utama dalam pendekatan matematika realistik yaitu: (a) Guided Reinvention and Progressive Mathematization (Penemuan terbimbing dan Bermatematika secara Progressif), (b) Didactical Phenomenology (Penomena Pembelajaran), dan (c) Self-developed Models (Pengembangan Model Mandiri) (Saragih, 2007:45).
Karakteristik Pembelajaran Metematika Realistik Sebagai operasionalisasi ketiga prinsip utama PMR di atas, PMR memiliki lima karakteristik, yaitu: a) the use of context (menggunakan masalah kontekstual), b) the use models (menggunakan berbagai model), c) student contributions (kontribusi siswa), d) interactivity (interaktivitas) dan e) intertwining (terintegrasi). Penjelasan secara singkat dari kelima karakteristik tersebut, secara singkat adalah sebagai berikut.
a) Menggunakan masalah kontekstual.
Pembelajaran matematika diawali dengan masalah kontekstual, sehingga memungkinkan siswa menggunakan pengalaman atau pengetahuan yang telah dimiliki sebelumnya secara langsung. Masalah kontekstual tidak hanya berfungsi sebagai sumber pematematikaan, tetapi juga sebagai sumber untuk mengaplikasikan kembali matematika. Masalah kontekstual yang diangkat sebagai topik awal pembelajaran, hendaknya masalah sederhana yang dikenali oleh siswa. Masalah kontekstual dalam PMR memiliki empat fungsi, yaitu: 
(1) untuk membantu siswa menggunakan konsep matematika, 
(2) untuk membentuk model dasar matematika dalam mendukung pola pikir siswa bermatematika, 
(3) untuk memanfaatkan realitas sebagai sumber aplikasi matematika dan 
(4) untuk melatih kemampuan siswa, khususnya dalam menerapkan matematika pada situasi nyata                        (realitas).
b) Menggunakan berbagai model.
Istilah model berkaitan dengan model matematika yang dibangun sendiri oleh siswa dalam mengaktualisasikan masalah kontekstual ke dalam bahasa matematika, yang merupakan jembatan bagi siswa untuk membuat sendiri model-model dari situasi nyata ke abstrak atau dari situasi informal ke formal.
c) Kontribusi siswa.
Siswa diberi kesempatan seluas-luasnya untuk mengembangkan berbagai strategi informal yang dapat mengarahkan pada pengkonstruksian berbagai prosedur untuk memecahkan masalah. Dengan kata lain, kontribusi yang besar dalam proses pembelajaran diharapkan datang dari siswa, bukan dari guru. Artinya semua pikiran atau pendapat siswa sangat diperhatikan dan dihargai.
d) Interaktif.
Interaksi antara siswa dengan guru, siswa dengan siswa, serta siswa dengan perangkat pembelajaran merupakan hal yang sangat penting dalam PMR. Bentuk-bentuk interaksi seperti: negosiasi, penjelasan, pembenaran, persetujuan, pertanyaan atau refleksi digunakan untuk mencapai bentuk pengetahuan matematika formal dari bentuk-bentuk pengetahuan matematika informal yang ditemukan sendiri oleh siswa.
e) Keterkaitan.
Struktur dan konsep matematika saling berkaitan, biasanya pembahasan suatu topik (unit pelajaran) harus dieksplorasi untuk mendukung terjadinya proses pembelajaran yang lebih bermakna. Dalam tesis ini karakteristik ini tidak muncul.
Dari prinsip dan karakteristik pembelajaran matematika realistik di atas maka dapat dikatakan bahwa permulaan pembelajaran harus dialami secara nyata oleh siswa, pengenalan konsep dan abstraksi melalui hal-hal yang konkret sesuai realitas atau lingkungan yang dihadapi siswa dalam kesehariannya yang sudah dipahami atau mudah dibayangkan siswa. Sehingga mereka dengan segera tertarik secara pribadi terhadap aktivitas matematika yang bermakna. Pembelajaran dirancang berawal dari pemecahan masalah yang ada di sekitar siswa dan berdasarkan pada pengalaman yang telah dimiliki oleh siswa.
Adapun sintak implementasi matematika realistik Suharta dalam Kadir (2005:10) adalah :

Aktivitas Guru
Aktivitas Siswa
Guru memberikan siswa masalah kontekstual.
Siswa secara sendiri atau kelompok kecil mengerjakan masalah dengan strategi-strategi informal.
Guru merespon secara positif jawaban siswa. Siswa diberikan kesempatan untuk memikirkan strategi siswa yang paling efektif.
 Siswa memikirkan strategi yang efektif untuk memberikan jawaban
Guru mengarahkan siswa pada beberapa masalah kontekstual dan selanjutnya meminta siswa mengerjakan masalah dengan menggunakan pengalaman mereka.
Siswa secara sendiri-sendiri atau berkelompok menyelesaikan masalah tersebut.
Guru mengelilingi siswa sambil memberikan bantuan seperlunya.
Beberapa siswa mengerjakan di papan tulis. Melalui diskusi kelas, jawaban siswa dikonfrontasikan.
Guru mengenalkan istilah konsep.
Siswa merumuskan bentuk matematika formal.
Guru memberikan tugas di rumah, yaitu mengerjakan soal atau membuat masalah cerita serta jawabannya yang sesuai dengan matematika formal.
Siswa mengerjakan tugas rumah dan menyerahkannya kepada guru.

No comments:

Post a Comment